SODIUM

Enzymatic Kinetic Colorimetric Determination of Sodium in Serum and in Plasma

4 x 15 ml + 2 x 10 ml

REF CY10-80

Additional kit:

2 x 5 x 1 ml SODIUM STANDARD

REF 7504

Aqueous standard with two concentrations (high and low)

The assay is based on the activation of $\beta\mbox{-galactosidase}$ enzyme by the sodium present in the sample and the consequent enzymatic transformation of o-nitrophenyl- β , D-galactopiranoside (o-NPG) into o-nitrophenol and galactose.

The o-nitrophenol formed is kinetically measured at 405 nm, as shown in the following reaction scheme:

Na¹ o-NPG o-nitrophenol + galactose β-galactosidase

REAGENTS

Kit components:	REF CY10-80	Quantity
REAGENT 1/A Buffer pH 8.90	CY10-80R1	2x30 ml
REAGENT 1/B (lyo blue cap) β-galactosidase	CY10-80R2	4 vials
REAGENT 2/A Buffer pH 6.20	CY10-80R3	1x20 ml
REAGENT 2/B (Iyo white cap) o-NPG	CY10-80R4	2 vials

STABILITY: stored at 2-8°C, reagents are stable up to the expiration date on the label.

PREPARATION OF WORKING REAGENTS

Let reagents reach room temperature before the reconstitution.

REAGENT 1 (R1/A + R1/B)

Reconstitute the contents of a vial of Reagent 1/B with exactly 15 ml Reagent 1/A. Shake gently until complete dissolution, avoiding any foam.

Wait 5 minutes before use. STABILITY: 2 weeks at 2-8°C

REAGENT 2 (R2/A + R2/B)

Reconstitute the contents of a vial of Reagent 2/B with exactly 10 ml of Reagent 2/A. Shake gently until complete dissolution, avoiding any foam.

Wait 5 minutes before use. STABILITY: 4 weeks at 2-8°C

SODIUM STANDARD (not included in the kit)

The Sodium standard (REF 7204) kit is made by two aqueous standards:

- low standard (concentration of sodium: 120 mmol/L)
- high standard (concentration of sodium: 160 mmol/L)

Each laboratory should choose to use low, high or both level standards according to its own needs and experience.

SAMPLE

Serum, plasma with lithium-heparin.

Warning: do not use sodium-EDTA. as anticoagulant.

MANUAL ASSAY PROCEDURE

Wavelength: 405 nm Optical path: 1 cm Temperature: 37°C

from 80 mmol/L to 180 mmol/L Linearity:

Sample/ Reagent 1/ Reagent 2: 1/30/10 Kinetic Reaction: Let reagents reach working temperature before use. Pipette into microcuvettes labeled as it follows: B/R: blank reagent, S: sample and STD: standard:

	B/R	S	STD
Distilled water	0.025 ml	=	=
Sample	=	0.025 ml	=
Standard	=	=	0.025 ml
Reagent 1	0.75 ml	0.75 ml	0.75 ml
Reagent 2	0.25 ml	0.25 ml	0.25 ml

Mix accurately, incubate at 37°C for 2 minutes. Read the initial absorbance at 405 nm against distilled water and start timer simultaneously. Read again after 1 and 2 minutes. Calculate the average of ΔA/min found for the blank reagent, the sample and

CALCULATION

Using only one standard (low or high)

 ΔA /min (S) - ΔA /min (B/R) sodium (mmol/L) =X [STD]

 $\Delta A / min (ST) - \Delta A / min (B/R)$

where [STD]= concentration of sodium in mmol/L of the standard used in the test.

Using both standards (low and high)

Using the two standards, draw a calibration line and calculate the sodium concentration in the sample.

Conversion values: mmol/L = mEq/L

 $mg/dl = mmol/L \times 2.3$

REFERENCE VALUES

Serum / plasma: 135 - 150 mmol/L (311 - 345 mg/dl)

PERFORMANCE CHARACTERISTICS

Linearity: between 80 and 180 mmol/L (184 - 414 mg/dl).

For values higher than 180 mmol/L, dilute the sample with the same volume of distilled water and multiply the result by 2.

Level 1

Level 2

Within-run precision:

	Average (mmol/L)	120	160
	DS	2.48	4.59
	CV%	2.06	2.86
Between-run precision:			
		Level 1	Level 2
	Average (mmol/L)	123	155
	DS	4.8	7.31
	CV%	3.90	4.72

Interferences:

Up to 2500 mg/dl of tryglicerides does not interfere. Up to 27 mg/dl of bilirubin does not interfere.

comparison to flame photometry.

NOTES

- (*) dangerous reagent are marked with an asterisk. Refer to safety data sheet.
- Use only sodium, potassium and calcium ions free distilled water.
- Use perfectly clean laboratory material (tips, glassware). In case sodium is defined together with potassium, sodium must be determined directly before potassium (bichannel method).
- Reaction volumes can be proportionally changed.
- Perform the measure of the standard for each sample series.
- Chemistry analyzer parameters are available.

DISPOSAL

The product must be used for professional analysis only. The product must be disposed of according to national/international laws.

WARNINGS AND PRECAUTIONS

The reagents may contain non-reactive components and various preservatives. Contact with the skin and ingestion should be avoided. Use the normal precautions expected with correct behaviour in laboratory.

REFERENCES

Available on request.

MANUFACTURER

FAR

Via Fermi, 12 - 37026 Pescantina - VERONA - ITALY

tel +39 045 6700870

website http://www.fardiag.com

e-mail: order@fardiag.com e-mail: fardiag@fardiag.com

KEY SYMBOLS

IVD	In Vitro diagnostic medical device
LOT	batch number
REF	catalogue number
1	temperature limits
Ω	use by
\triangle	caution
[]i	consult accompanying documents